Solving Mixed Model Workplace Time-dependent Assembly Line Balancing Problem with FSS Algorithm
نویسندگان
چکیده
Balancing assembly lines, a family of optimization problems commonly known as Assembly Line Balancing Problem, is notoriously NP-Hard. They comprise a set of problems of enormous practical interest to manufacturing industry due to the relevant frequency of this type of production paradigm. For this reason, many researchers on Computational Intelligence and Industrial Engineering have been conceiving algorithms for tackling different versions of assembly line balancing problems utilizing different methodologies. In this article, it was proposed a problem version referred as Mixed Model Workplace Time-dependent Assembly Line Balancing Problem with the intention of including pressing issues of real assembly lines in the optimization problem, to which four versions were conceived. Heuristic search procedures were used, namely two Swarm Intelligence algorithms from the Fish School Search family: the original version, named “vanilla", and a special variation including a stagnation avoidance routine. Either approaches solved the newly posed problem achieving good results when compared to Particle Swarm Optimization algorithm.
منابع مشابه
Simultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing
This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...
متن کاملAn algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis
This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker’s skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) an...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملSolving a multi-objective mixed-model assembly line balancing and sequencing problem
This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...
متن کاملMixed-Model Assembly Line Balancing with Considering Reliability
This paper presents a multi-objective simulated annealing algorithm for the mixed-model assembly line balancing with stochastic processing times. Since, the stochastic task times may have effects on the bottlenecks of a system, maximizing the weighted line efficiency (equivalent to the minimizing the number of station), minimizing the weighted smoothness index and maximizing the system reliabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.06132 شماره
صفحات -
تاریخ انتشار 2017